
The Jump Point Search Pathfinding System in 3D

Thomas K. Nobes, Daniel D. Harabor, Michael Wybrow, Stuart D.C. Walsh
Faculty of Information Technology, Monash University, Australia

{thomas.nobes, daniel.harabor, michael.wybrow, stuart.walsh}@monash.edu

Abstract

The ability to quickly compute shortest paths in 3D grids is
a technological enabler for several applications such as pipe
routing and computer video games. The main challenge is how
to deal with the many symmetric permutations of each shortest
path. We tackle this problem by adapting Jump Point Search
(JPS), a well-known symmetry breaking technique developed
for fast pathfinding in 2D grids. We give a rigorous reformu-
lation of the JPS pathfinding system into 3D and we prove
that our new algorithm, JPS-3D, is optimality preserving. We
also develop a novel method for limiting scan depth during
jump operations, which can further reduce search time. Ex-
perimental results show significant improvements versus on-
line A* search and previous attempts at generalising JPS. We
demonstrate that searching with adaptive scan limits can yield
additional speedups of over an order of magnitude.

Introduction and Related Work
Three-dimensional (3D) pathfinding is a problem found in
many practical applications, such as robotics, pipe-routing
and video games. In each of these settings, practitioners value
paths that are as short as possible and which can be com-
puted as fast as possible. But computing optimal 3D paths
is known to be NP-hard (Canny and Reif 1987). This result
has motivated consideration of a variety of alternative solu-
tion strategies. Typically, these involve creating a graph to
approximately represent the 3D space, and then running an
optimal search algorithm, such as A*, to solve the (approxi-
mate) 3D problem as effectively as possible.

Several discretisation methods appear in the literature. In
some 3D video games for example, agents have height but ac-
tually plan on a 2D mesh (Noonchester 2019). This pseudo-
3D approach often produces reasonable solutions but is in-
complete in general. The Sparse Voxel Octree (SVO) is an-
other discrete data structure used in 3D robotics and game
development (Schwarz and Seidel 2010). SVOs partition the
3D space into eight octants, which themselves are recur-
sively partitioned if they contain any obstacle. The result is
a representation that has high resolution around obstacles
and low resolution in large open regions. Current SVO plan-
ners (Brewer 2019; Muratov and Zagarskikh 2019) are com-
plete but they may produce poor quality solutions, as each

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

path is defined in terms of octant centres. A related approach,
voxel grids, partitions the 3D space uniformly. Paths com-
puted with voxel grids often have much smaller detours than
SVO, and are thus more desirable, especially for 3D games
(Beig et al. 2019; Silva, Reis, and Grilo 2019; Alain 2018)
where agents need to appear intelligent.

Yet there are several difficulties associated with pathfind-
ing on voxel grids. First, the size of the state space is of-
ten very large; current benchmarks (drawn from real 3D
games) have up to hundreds of millions of voxel states per
map (Brewer and Sturtevant 2018). Second, the branching
factor is also quite large. Each voxel has up to 26 succes-
sors, corresponding to each of the possible 3D grid moves.
Third, an optimal algorithm such as A*, when applied to a
voxel grid, spends substantial time expanding and exploring
equivalent symmetric paths. These paths are identical to one
another except for the order in which individual grid moves
appear (i.e., only one is required; the rest are redundant).

In 2D grids, symmetries are handled using specialised
pruning algorithms such as Jump Point Search (JPS) (Hara-
bor and Grastien 2011). Among all possible solution paths
(and partial paths), JPS prefers those where diagonal moves
appear as early as possible. Other equivalent-cost paths,
where diagonals appear later, are pruned. Multiple works
in the literature adapt JPS to 3D but each one has various
drawbacks and limitations. For example, Min, Ruy, and Park
(2020) apply JPS to the problem of 3D pipe-routing but de-
scribe only a 6-connected search. Liu et al. (2017), Zhang
(2021) and Zhang, Zhang, and Low (2021) consider a 26-
connected grid for unmanned aerial vehicle (UAV) planning.
However the computed solutions are corner-cutting paths,
which require further post-processing before they can be
passed to UAV agents for actual execution (see Figure 1).
Moreover, all of these works conduct experiments on rela-
tively small maps with only hundreds of thousands of voxels.

In this work we make the following contributions: (i) a
detailed reformulation of the JPS pathfinding system to 3D
voxel grid maps, which we call JPS-3D; (ii) a theoretical re-
sult that proves searching with jump points in 3D preserves
feasibility (i.e., no corner cutting) and optimality; (iii) devel-
opment of an adaptive method for limiting scan depth that
further improves performance. We run experiments on recent
voxel-world benchmarks from the literature and record up to
one order of magnitude improvement over baseline A*.



x a

b
c

Figure 1: Example of corner-cutting on a 2×2×2 grid; we
show valid (green) and invalid (red) neighbours of current
node x due to an obstacle (black). In the standard 2D case,
nodes a and b are invalid due to sharing their common edge
with an obstacle. For 3D, the move from x to c that passes
through a vertex shared by an obstacle is also invalid. If we
allow corner-cutting, all neighbours would be valid moves.

Notation and Terminology

We consider point to point pathfinding in an undirected
uniform-cost 3D grid map. Each map comprises x(width)×
y(height)× z(depth) number of distinct voxels. Each voxel
(equiv. node) is either blocked or traversable and has up to
26 adjacent neighbours. A transition from one voxel to an-
other is called a move, denoted using the vector notation m⃗.
A move can be in one, two or three dimensions. In particular,
there are up to six one-dimensional transitions, each with a
cost of 1. We call these straight moves. Similarly, there are
up to 12 two-dimensional transitions, each with a cost of

√
2.

We call these 2D diagonal moves. Finally there are up to 8
three-dimensional transitions, each with a cost of

√
3. We call

these 3D diagonal moves. A move m⃗ is considered feasible
if: (i) the origin and destination voxel are both traversable
and; (ii) the resulting vector does not intersect the edges or
corner points of any adjacent obstacle (see Figure 1 for an
example); i.e., we disallow corner-cutting transitions.

A path π = ⟨n0, n1, ..., nk⟩ is a cycle-free walk start-
ing from a node n0 and ending at node nk. Equivalently, a
path can be described as a sequence of moves that together
allow an agent to transition from node n0 to node nk: i.e.
π = ⟨n0, m⃗1, ..., m⃗k⟩. We sometimes use the path algebra
n′ = n + k × m⃗, which means that node n′ is reached from
node n after k applications of move m⃗. We say that the length
of a path is equal to the number of constituent moves. The
cost of a path is the sum of its individual move costs.

When searching for a 3D path, with A* or JPS-3D,
we require an admissible estimate of the true cost-to-
go from a given search node to the goal node. The
three-dimensional distance between a node n and node
n′ on a 26-connected grid is composed of distances
∆x, ∆y and ∆z in each respective axis. Let dmax =
max(∆x,∆y,∆z), dmin = min(∆x,∆y,∆z), and dmid =
{∆x,∆y,∆z}\{dmax, dmin}. The voxel distance between
nodes n and n′ is subsequently calculated as:

h(n, n′) = (
√
3−
√
2)dmin + (

√
2− 1)dmid + dmax.

Jump Point Search in 3D
Jump Point Search (JPS) is a 2D grid pathfinding algorithm
that combines the best-first expansion strategy of A* search
with a recursive successor pruning strategy called diagonal-
first. Among all optimal 2D paths JPS considers only those
where diagonal moves appear as early as possible. Other
paths, having the same optimal cost but diagonal moves
which appear later, are pruned. In JPS-3D we generalise
this idea and explore the larger 3D state space by taking 3D
diagonal moves as early as possible, then 2D diagonal moves
and finally straight moves. Our approach has two main
components: pruning rules, that specify which successors to
prune and which to keep, and jumping rules, that specify how
to apply the pruning strategy recursively and when to stop.
We borrow and extend terminology and definitions from
Harabor and Grastien (2011), repeated here for convenience.

Pruning Rules: Given a node x reached via a parent
node p, we prune from the neighbours of x any node n for
which one of the following rules applies:

1. there exists a path π′ = ⟨p, y, n⟩, or simply π′ = ⟨p, n⟩
that is strictly cheaper than the path π = ⟨p, x, n⟩;

2. there exists a path π′ = ⟨p, y, n⟩ with the same cost as
π = ⟨p, x, n⟩, but π′ has an earlier diagonal move than π.

Figures 2a, 2b and 2c illustrate this pruning procedure. We
refer to the remaining neighbours after pruning (white) as
canonical neighbours. Figures 2d, 2e and 2f further show that
obstacles can lead to newly necessary neighbours that modify
the list of successors for x, which we call forced successors.

Definition 1. (Harabor and Grastien 2011) A node n ∈
neighbours(x) is forced if:

1. n is not a canonical neighbour of x
2. there exists a cheaper or equivalent (new in 3D) cost path

π′ = ⟨p, y, n⟩ to the path π = ⟨p, x, n⟩ through x, that is
not valid due to the step from p to y being blocked by an
obstacle.

Jumping Rules: JPS applies to each forced and canonical
neighbour of the current node x a simple “jumping” proce-
dure; the objective of which is to replace each neighbour n
with an alternate successor n′ that is further away. This strat-
egy speeds up optimal search by selectively expanding only
certain, interesting nodes, which we refer to as jump points.

Definition 2. (Harabor and Grastien 2011) Node y is the
jump point from node x, heading in direction d⃗, if y minimises
the value k such that y = x + kd⃗ and one of the following
conditions holds:

1. Node y is the goal node.
2. Node y is has at least one neighbour whose evaluation is

forced according to Definition 1.
3. The current heading direction d⃗ is a diagonal move and

there exists a node z = y + kid⃗i which lies ki ∈ N steps
in some canonical direction d⃗i s.t. z is a jump point from
y by condition 1 or 2.



p
x

(a)

p
x

(b)

p

x

(c)

p
x

(d)

p
x

(e)

p
x

b
a′ y

a
b′

(f)

Figure 2: Each sub-figure represents a 3×3×3 grid around the current node x. Canonical (white) and pruned (grey) neighbours
of x reached from parent p (blue) via the corresponding move; (a) straight; (b) 2D diagonal; and (c) 3D diagonal. Forced
neighbours (beige) of x either reached via a straight move due to an obstacle (black) that is (d) adjacent or (e) diagonal to p, or
reached via (f) a 2D diagonal move. Either location a or b (orange) being the sole obstacle forces the corresponding neighbour
a′ or b′ respectively by eliminating the equivalent diagonal-first path π = ⟨p, y, a′⟩ or π = ⟨p, y, b′⟩.

We now summarise how neighbour pruning is used in JPS’
recursive grid-scanning procedure, adapted for 3D, and we
subsequently illustrate the advantages of this search strategy.

Observe in Figure 2a that pruning for a straight move re-
duces the number of successors of x to a single node n. JPS
exploits this property by immediately exploring n, and doing
so recursively until we either (i) hit an obstacle, or reach a
node n′ which (ii) has a forced neighbour or (iii) is the goal
itself. In case (i), all nodes along the failed path are discarded
and no successors are added to the OPEN list. In case (ii) and
case (iii), node n′ is generated as direct successor of x. No-
tice how this allows the search to jump, from x to n′, without
expanding any intermediate nodes (from x to n′).

Figure 2b demonstrates that 2D diagonal pruning yields
three canonical neighbours. We continue to take additional
2D diagonal steps only in the case that recursion along both
straight neighbours produces failed paths. This ensures that
we do not miss any potential optimal turning points. A fur-
ther example shown in Figure 3. Here, we continue to take
2D diagonal steps while straight recursions hit obstacles to
the East and the edge of the map to the North. When recurs-
ing East from n′, we identify that n′′ has a forced neighbour
around the obstacle and towards G. Thus, we stop scanning
and return n′ as a jump point.

Figure 2c demonstrates a 3D diagonal move which pro-
duces seven canonical neighbours: three straight, three 2D
diagonals and one 3D diagonal. In this case, we first recurse
in each canonical straight and canonical 2D direction (also
inner recursions for the 2D diagonals). Only if none of these
recursions yields a jump point (or the goal) do we take the
next 3D diagonal step.

By jumping (see Algorithm 1), JPS is able to move quickly
across the map without generating intermediate nodes in the
OPEN list. This both (i) reduces the number of operations,
and (ii) reduces the number of nodes in the OPEN list, ef-

fectively making each list operation itself cheaper (Harabor
and Grastien 2012). Notice that JPS-3D upholds the proper-
ties of JPS; search is performed entirely online, involves no
pre-processing, and has no memory overhead.

Optimality
In this section, we prove that for each optimal cost path in
a 3D gridmap, there exists an equivalent cost path which
can be found by only expanding jump point nodes during
search. Our result closely follows the proof of the identical
proposition for 2D gridmaps laid out by Harabor and Grastien
(2011). We derive this result by describing the process to ob-
tain a symmetric alternate for each optimal path. We repre-
sent this path as a series of contiguous segments, and further
prove that each turning point along this path is a jump point.

Definition 3. A turning point is any node nk along a path
where the previous move m⃗k, from nk−1 to nk, is a different
direction to the next move m⃗k+1, from nk to nk+1. A turning
point is optimal if the cost of m⃗k and m⃗k+1 together equal
the cost of a cheapest path, from nk−1 to nk+1.

We describe a turning point at node nk equivalently
as a transition from node nk−1 to node nk+1 by the
moves m⃗k and m⃗k+1, i.e. ⟨nk−1, m⃗k, m⃗k+1⟩. Along an
optimal path we can encounter only optimal turning
points. These can be constructed using the following move
types: {m⃗k, m⃗k+1 ∈ {S, 2D, 3D}} \ {m⃗k = m⃗k+1 = 3D}
for straight (S), 2D diagonal (2D) or 3D diagonal (3D)
moves. Note that a turning point requires the direction of
travel to be different, rather than the dimension of travel (i.e.
both moves can be straight, for example, as long as the di-
rections themselves are different such as moving North after
moving East). We exclude 3D-to-3D turning points as these
are suboptimal and can never appear on any optimal path.
Other turning points of type S-to-S, S-to-2D, S-to-3D, 2D-



to-2D and 2D-to-3D are also suboptimal, unless there exists
no cheaper alternative (e.g., these can appear when an opti-
mal path bends tightly around an obstacle).

We now define an equivalence between jump points and
the turning points that appear along those paths which have a
property called 3D Diagonal-First (3DDF).

Definition 4. A path π is 3DDF if it does not contain a turn-
ing point ⟨nk−1, m⃗k, m⃗k+1⟩ that can be replaced by a turn-
ing point ⟨nk−1, m⃗k+1, m⃗k⟩ such that the cost of π remains
unchanged, matching one of the following cases:

Case 1: m⃗k = S, m⃗k+1 = 2D.
Case 2: m⃗k = S, m⃗k+1 = 3D.
Case 3: m⃗k = 2D, m⃗k+1 = 3D.

Given an arbitrary 3D path π we can repeatedly apply Def-
inition 4 to derive a symmetric alternative, π′, which has the
same cost as π but where at least one 3D or 2D move ap-
pears sooner. When the procedure is no longer applicable the
path π′ is guaranteed to be optimal (it has the same set of
moves as π and therefore the same cost) and it is guaranteed
to have the 3DDF property (since no 3D or 2D move can ap-
pear sooner). The transformation algorithm is a conceptual
device only. We adapt from the 2D version of Harabor and
Grastien (2011) (full details contained therein).

Lemma 1. (Harabor and Grastien 2011) Each turning point
along an optimal 3DDF path π′ is also a jump point.

Proof. Let nk be an arbitrary turning point node along π′.
We consider three general cases for reasoning about nk.
We then describe briefly how each possible turning point
must also be a jump point according to respective cases.

Case 1: Violation that π′ is optimal.
We know that there must be an obstacle adjacent (di-
rectly or diagonally) to both nk−1 and nk which forces
a detour. If this were not the case, we would observe
that dist(nk−1, nk+1) < dist(nk−1, nk) + dist(nk, nk+1),
which contradicts the fact that π′ is optimal. We conclude
that nk+1 is a forced neighbour of nk such that by the second
condition of Definition 2, nk is a jump point.

Case 2: Violation that π′ is 3DDF.
Turning points belonging to this case represent a turn from
a lower-dimensional move mk to a higher-dimensional move
mk+1. We know that there must be an obstacle adjacent (di-
rectly or diagonally) to both nk−1 and nk. If this were not
true, we could obtain an alternate, equivalent-cost path that
does not pass through nk by swapping the order of the moves
mk and mk+1, such that the higher-dimensional move is
taken first. This contradicts the fact that π′ is 3DDF. Since
π′ is guaranteed to be 3DDF, we derive the fact that nk+1 is
a forced neighbour of nk. By the second condition of Defini-
tion 2, we conclude that nk is a jump point.

Case 3: Either the goal is reachable by a series of straight
or 2D diagonal steps, or π′ has additional turning points.
If the goal is reachable by a series of one of only straight or
2D diagonal steps, we conclude that nk has a jump node suc-
cessor that satisfies the third condition of Definition 2. If nk

is instead followed by another turning point nl, then that turn-
ing point must already correspond to either Case 1 or Case 2
accordingly, and by the argument for each case, nl is also a

Algorithm 1: Function jump

Require: x: initial node, d⃗: direction, s: start, g: goal, L scan
limit,

∑
σ: penalty sum

1: d⃗r ← getRecDir(d⃗, d⃗i∈{1,2,3})

2: σ ← calcPenalty(d⃗, d⃗r) ▷ σ: penalty
3:

∑
σ ←

∑
σ + σ

4: n← step(x, d⃗)
5: if n is an obstacle or is outside the grid then
6: return null
7: if n = g then
8: return n
9: if ∃n′ ∈ neighbours(n) s.t. n′ is forced then

10: return n
11: if d⃗ is diagonal then
12: switch d⃗ do
13: case 2D
14: A← {1, 2}
15: case 3D
16: A← {1, 2, 3, 4, 5, 6}
17: for all i ∈ A do
18: if jump(n, d⃗i, s, g,

∑
σ) is not null then

19: return n
20: if

∑
σ > L then

21: return n
return jump(n, d⃗, s, g,

∑
σ)

jump point. We again conclude that nk has a jump point suc-
cessor that satisfies the third condition of Definition2 such
that nk is also a jump point.

S-to-S and 2D-to-2D: Both correspond to Case 1. In the
absence of an obstacle, the S-to-S detour is more expensive
than the direct

√
2 move from nk−1 to nk+1. Similarly, the

2D-to-2D detour would be more expensive than the path that
took a 3D and straight move with cost 1 +

√
3. As π′ is opti-

mal, we conclude that nk+1 must be forced from nk.
S-to-3D and 2D-to-3D: Both relate to Case 2. In the ab-

sence of an obstacle, the S-to-3D could be replaced by a 3D-
to-S and the 2D-to-3D by a 3D-to-2D turning point respec-
tively. Since π′ is 3DDF, the turning points must be forced.

S-to-2D: and 2D-to-S: There are two possibilities; nk+1

is either (i) reachable or (ii) not reachable via a 3D diagonal
move from nk−1. If reachable, both detours are suboptimal
compared to a direct 3D move from nk−1 to nk+1 (Case 1). If
unreachable, S-to-2D could be replaced by a 2D-to-S, which
violates the fact that π′ is 3DDF (Case 2). For 2D-to-S, how-
ever, we observe behaviour related to Case 3, where if there is
a later turning point nl, it could be of types S-to-S, S-to-2D,
or S-to3D. Alternatively, the goal is reachable by a series of
straight steps. By the arguments for each, nl is a jump point.

3D-to-S and 3D-to-2D: Both relate to Case 3. The later
turning point nl could be of types S-to-S, S-to-2D, or S-to-3D
and of types 2D-to-S, 2D-to-2D, or 2D-to-3D respectively.
By the arguments for each, nl must be a jump point.

Theorem 1. (Harabor and Grastien 2011) Searching with



S G

n′ n′′

...
...

...
...

...

Figure 3: Example of JPS scanning. Strong lines indicate
eventual jumps. Dashed lines indicate recursive straight scans
before following diagonal steps. Dash-dotted lines show
other directions scanned from the start S.

jump point pruning always returns an optimal solution.

This proof now follows identically to the proof in Harabor
and Grastien (2011). We only summarise briefly below, see
the original paper for further details.

Proof. Given an arbitrary optimal path π and its symmetric
3DDF equivalent π′, we will show that every turning point
along π′ is expanded optimally when searching with jump
point pruning.

Divide π′ into adjacent segments π′ = π′
0 + π′

1 + ...+ π′
n,

whereby each subpath π′
i = ⟨n0, n1, ..., nk−1, nk⟩ is com-

posed only of moves in the same direction (e.g., only “up” or
“down”, etc.). Thus, aside from the start and goal, each node
at the beginning of a segment must be a turning point.

Since each segment π′
i consists only of moves in a single

direction, we can jump from n0 to nk. Though intermedi-
ate expansions may be necessary along this subpath, we have
guaranteed the path from n0 to nk is optimal. Since π′ is also
3DDF, Lemma 1 determines that each turning point along
π′ must also be a jump point. As such, every turning point
must be expanded during search, leaving only the start and
goal nodes. The start node is trivially expanded at the start of
search, and is treated specially; every direction is canonical.
The goal is a jump point by definition.

Adaptive Scanning Limit
A main advantage of JPS over A* is the ability to move large
distances across the grid very quickly. However, the recur-
sive scanning procedure used by JPS to achieve this advan-
tage has its own drawbacks, as we illustrate in Figure 3. Here,
we identify a jump point at node n′ due to the forced neigh-
bour for node n′′. During its diagonal recursion step, JPS
will perform lengthy scanning of the grid area North. But
these scans are entirely redundant, since no grid tile in this
direction can possibly belong to the optimal path. In other
words JPS spends substantial time pruning surplus nodes
that could never be expanded. A* by comparison, supposing
a well informed heuristic is available, will quickly expand
nodes along the optimal 2D diagonal. The example motivates
us to consider strategies for limiting the JPS scan depth. In
particular we aim to balance two competing considerations:

2
√
2 2 2

2

2

2−
√
2

2−
√
2 0

x

(a)

2
√
3 1+

√
3 1+

√
3

1+
√
3

1+
√
3

√
2

√
2

1+
√
3

−
√
2

1+
√
3

−
√
2

(b)

Figure 4: Penalties for each neighbour n of current node
x relative to node r in the recommended direction (arrow)
Northeast. The 3×3 horizontal plane (a) around x, and (b)
above and below x (same values) are shown. Each penalty
σn is calculated as σn = h(x, n)+h(n, r)−h(x, r). Note
that r has zero penalty.

(1) stop scan operations sooner, to avoid exploring parts of
the grid which are unlikely to contain the optimal path; and
(2) reduce the number of expansions, by jumping to interest-
ing nodes in fewer steps.

Methodology
Seeking to optimally limit the scan depth on a map-to-map
basis requires prior knowledge of the domain, and likely
instance-specific paths. A preliminary approach is to bound
the scan by a constant step limit. This has been suggested
in prior works including Harabor and Grastien (2012) and is
implemented as Bounded JPS (BJPS) in Sturtevant and Ra-
bin (2016). This method is difficult to parameterise due to
the constant limit being completely uninformed about path
length and the current jump direction relative to the goal.

In this work we develop an alternative method that dynam-
ically computes a scanning limit L based on the h-value esti-
mate of the current node n. The formulation is as follows:

L = (t− 1) · h(n),
where h(n) is the usual distance-to-go from node n and t is a
slack parameter, which controls the total amount of deviation.
However, as not all jump directions are equally promising,
we do not apply L uniformly. Instead, we apply a penalty σ
for each step taken during a JPS grid scan. The value of σ
is the difference in cost between the proposed jump direction
and the direction which minimises the distance toward the
target, according to the h-value function. Figure 4 shows an
example.

During a scan we therefore require that the sum of penal-
ties at each recursive step i does not surpass L; i.e.,

∑i
1 σ ≤

L. Notice that there is no penalty for moving in a recom-
mended direction, and so the scan is always able to proceed
unimpeded to the goal if possible (cf. stopping every k steps,
as occurs with a constant limit). Exceeding the scan limit
meanwhile stops the recursion immediately and produces a
(pseudo-) jump node. Our strategy is optimality-preserving
since each stopped scan may continue later, when the f-value
of its (pseudo-) jump point becomes minimum.

The effectiveness of our proposed approach depends partly
on the accuracy of the heuristic function. In this work we use



(a) (b)

Figure 5: Example maps from Warframe benchmarks; (a)
A1map and (b) C1map.

the voxel distance heuristic which has small average error on
our benchmark set. We use this heuristic to compute a grid-
distance estimate and a corresponding set of recommended
grid moves (i.e., we compute the number of straight, 2D and
3D moves required to achieve the estimated cost). During a
scan we do not penalise moves in these directions as long as
there are steps remaining to be taken in that respective direc-
tion. When the scan exceeds the number of steps in a rec-
ommended direction we introduce a penalty. The penalty is
always calculated relative to the closest recommended direc-
tion with remaining steps. Scan halts immediately if there are
no remaining steps in any recommended direction.

To set the slack parameter, we measure (offline) the heuris-
tic error for each instance in our benchmark set; i.e., the dif-
ference between the h-value of the start node and the optimal
path cost. We run experiments with both the measured me-
dian and mean heuristic error, t = 1.008 and t = 1.025 re-
spectively, as well as other less conservative values of t = 1.5
and t = 2. When the slack parameter t = 1, the scan is most
tightly bound; no deviation is allowed from the recommended
path. In this setup the behaviour of JPS-3D behaviour closely
resembles A* search, due to having an effective step size of
1 outside of grid-best directions. However, we retain the ad-
vantage of unbounded scan towards the goal. For t = 2, we
allow any number of scan steps up to the point that the sum
of their individual penalties surpasses the estimated distance
to the goal h(n) at node expansion. Tuning the slack param-
eter t online based on instance-to-instance heuristic-error is
an interesting avenue for future work.

Experimental Setup
We implement JPS-3D in C++ and we compare against a
baseline implementation of 3D A*. Both algorithms are de-
rived from WARTHOG, a freely available pathfinding library1,
and therefore share a variety of common data structures.

To evaluate performance we use a set of 44 voxel grids
which range in size from 50 to 500 million voxels (Brewer
and Sturtevant 2018). These maps are taken from Warframe,
a popular online multiplayer game published by Digital Ex-
tremes in 2013. Each map is associated with 10,000 valid
start-target pairs, making a total of 440,000 instances. The
instances are selected at random but from among the set of
voxels within 5 steps of an obstacle, so as to promote inter-
esting, non-direct paths. We do not report results on the four
variations of the C-maps (named) within the data-set due to

1https://bitbucket.org/dharabor/pathfinding

0 2 4 6 8
Nodes Expanded by A* 1e6

1

2

5

10

17

Av
er

ag
e 

Sp
ee

du
p 

Fa
ct

or

Figure 6: Average search time speedup of JPS-3D and an
adaptive scanning limit with slack parameter t= 1.5. Buck-
eted by nodes expanded by A*, a measure of problem diffi-
culty. Error bars indicate standard deviation within buckets.

impractical runtimes: individual instances can take up to hun-
dreds of seconds to solve. This leaves 400,000 instances for
testing. Our test machine is an Intel Xeon 8260 with 268.55
GB of RAM running Ubuntu 20.04 LTS.

Results
We discuss results in terms of the time taken to solve a prob-
lem and the number of nodes expanded with and without
graph pruning. In each case we report the relative speedup of
JPS-3D over A*. A search-time speedup value of 2 indicates
the solve time was twice as fast, whereas a node-expansion
speedup of 2 indicates that half the number of nodes were
expanded. In both cases, a higher speedup is better. We fur-
ther report the number of nodes scanned across algorithmic
variants with and without limits on scan depth.

Our main result is Figure 6, which compares A* to the
best version of JPS-3D, which features an adaptive scanning
limit and a slack parameter t = 1.5. Here, we plot the aver-
age search time speedup across all Warframe instances. We
group the instances into buckets, according to the number of
A* node expansions, and we plot the averages of each bucket.
Error bars indicate standard deviation within each bucket. We
choose to bucket problem instances by the number A* nodes
expansions since this gives a good measure of problem dif-
ficulty. Another often-used approach is to bucket instances
according to path length. We avoid this as the variability be-
tween instances in a single bucket can produce misleading re-
sults. Further experimental data, for all our algorithmic vari-
ants, are reported in Table 1.

Our results in Figure 6 show that JPS-3D consistently out-
performs A* and can be near an order of magnitude faster,
on average. We also note that both methods of limiting scan
report search time speedup improvements over vanilla JPS-
3D. On average, our results indicate that our novel method
of adaptively limiting scan outperforms a constant scan limit.
However, the relative performance of both methods is quite
similar; we conclude that our method is competitive with a
constant scanning limit.

One surprising result, seen in Figure 6, is that relative per-
formance of JPS-3D decreases with problem difficulty. Usu-



Algorithm Nodes Expanded Nodes Scanned Search Time (ms)
Q1 Med Q3 Max Speed Q1 Med Q3 Max Q1 Med Q3 Max Speed

A* 462 3.7k 60k 14.6M - - - - - 0.56 2.32 33.60 1.8e+5 -
JPS-3D 110 372 2.6k 1.3M 33.33 5M 27M 138M 4B 1.34 5.57 24.10 2.3e+4 2.25
SL t=1.008 216 1.3k 14.0k 10.6M 5.98 47 187 523 32k 0.28 1.00 9.51 2.0e+4 3.94
SL t=1.025 205 1.0k 11.7k 9.8M 6.62 47 188 526 32k 0.28 0.91 8.78 2.1e+4 4.16
SL t=1.5 156 591 7.6k 8.5M 9.55 48 203 561 5M 0.25 0.83 7.57 1.6e+4 4.71
SL t=2 145 593 6.9k 7.8M 13.54 86 263 637 8M 0.27 1.02 8.27 1.3e+4 4.46
CL=50 178 672 8.6k 10.3M 6.81 125 260 306 153k 0.27 0.82 8.61 1.5e+4 3.90
CL=100 153 551 7.1k 8.0M 9.08 245 524 750 3M 0.30 0.93 8.00 1.6e+4 4.32
CL=200 133 448 5.1k 8.6M 13.31 414 972 3k 23M 0.41 1.34 8.56 1.4e+4 4.06

Table 1: Results across Warframe benchmarks. Numbers in bold represent column-best values. SL refers to an adaptive scanning
limit with slack parameter t. CL refers to using a constant scan limit of some integer value. Columns Q1 and Q3 indicate values
for the first and third quartile respectively. Speed refers to the average speedups across all instances.

ally, challenging instances for A* are those which exhibit
“fill in”: large open areas that must be explored because A*’s
heuristic makes these areas appear attractive. In these settings
we would expect the relative performance of JPS-3D to in-
crease as the pruning procedure removes larger amounts of
redundant work. In the Warframe benchmark, however, most
maps are composed of clusters of individual asteroids along
a central axis (see Figure 5a). This geometry does not explic-
itly feature enclosed areas of significant size that must be ex-
plored by A* for shortcuts (C-maps are a notable exception;
we discuss these shortly). Here A* exhibits a type of “fill-
out“ behaviour, expanding nodes on and around the asteroids
in order to make progress towards the goal. Although much
of this work is redundant due to symmetric paths around the
asteroid, A* is still able to make reasonable progress. Once
the fill-out stage is completed, A* is usually able to make
fast progress toward the goal as the remaining heuristic error
is often small. These observations lead us to conclude that A*
is a competitive algorithm for many Warframe maps.

Another observed issue, challenging for JPS-3D, involves
searching across staircase-like obstacles. In this case, the scan
procedure is perpetually interrupted due to a forced neigh-
bour around the next step. When scans are short JPS ex-
hibits A*-like behaviour, with many single step expansions
required to make progress toward the target. Asteroids within
the Warframe benchmark often exhibit this feature, with few
walls or long axes to scan across. We omit entirely (for JPS-
3D and also A*) experimental results on C-maps, a collec-
tion of 4 large maps which were computationally impractical
to solve. These maps feature a uniquely large central obsta-
cle (see Figure 5b) which must be slowly stepped over and
around. Note that this central obstacle is also hollow (com-
pounding the issues already observed).

Discussion
Several works in the literature have attempted to adapt JPS
to 3D and failed to achieve search time speedups due to
the large branching factor (Muratov and Zagarskikh 2019;
Brewer 2019). We are aware of four successful prior attempts
in the literature to translate JPS for 3D grid maps, three
of which plan in the context of unmanned aerial vehicles
(UAVs). In the most closely related work, Liu et al. (2017) de-
tail planning feasible trajectories for UAVs in 26-connected

gridmaps. They provide detailed explanations for neighbour
pruning in 3D, but allow corner-cutting. In a 3D grid map,
corner-cutting refers to validating diagonal moves from one
voxel to another through the vertex or edge of a neighbouring
obstacle (see Figure 1). Many common applications of 3D
pathfinding (e.g., robotics, UAVs and video games) require
that a valid path cannot corner-cut due to the agent having
size at the resolution of the gridmap. Liu et al. (2017) over-
come this issue by applying a series of post-processing steps
to the planned path in order to obtain feasible solutions.

To compare solution quality between our works, we imple-
ment their formulation of pruning rules as a simple augmen-
tation to our generic 3D JPS. We run experiments on syn-
thetic maps from the literature with a total of 400,000 in-
stances, and find that only 21% of solutions when search-
ing with corner-cutting are valid plans. On certain maps, this
can be as low as 2%. This highlights a significant limitation
of prior work; solution quality of path planning with corner-
cutting is poor, and often cannot find feasible solutions.

Both Zhang (2021) and Zhang, Zhang, and Low (2021)
also implement JPS in 3D for route identification for un-
manned drone navigation on a 26-connected voxel grid map.
Insufficient detail is provided to infer their implemented
pruning rules. In any case, these works are also limited in that
they plan with corner-cutting and conduct post-processing
steps to improve path feasibility.

Min, Ruy, and Park (2020) apply JPS to the problem of
3D pipe-routing and describe only 6-connected search. This
avoids the problems faced by corner-cutting, but is a much
simpler problem that cannot obtain optimal solutions for
problems with diagonal movement.

Further, experiments across these four works are con-
ducted on relatively small maps with only hundreds of
thousands of voxels. In this work, we efficiently solve 26-
connected experiments with hundreds of millions of voxels.
No previous reformulation of JPS to 3D has been able to
satisfy all of the following; (i) preserves optimality, (ii) al-
lows full 26-connected movement, and (iii) disallows corner-
cutting.

Conclusion
Here we have introduced JPS-3D; a complete reformulation
of the competitive 2D JPS pathfinding system for 3D grid



maps. Our algorithm identifies and selectively expands nodes
called jump points based on 3D path symmetry breaking.
Moving between jump points involves only travelling in a
fixed direction; either straight, 2D diagonal or 3D diagonal.
We prove that JPS-3D upholds search optimality through its
jumping procedure in which intermediate expansions along a
path between two jump points never need to be expanded.

Our work is unique among previous translations of JPS
to three dimensions as our algorithm can solve realistic 3D
pathfinding scenarios by disallowing corner-cutting shortcuts
around obstacles. We find that using jump points in 3D pro-
duces significant search time speedups compared to A*. We
further develop an adaptive method for limiting scan depth
to reduce over-scanning in potentially suboptimal directions
by allowing an amount of slack to deviate from the heuristic-
optimal path. Searching with this method returns improved
speedups that can be over one order of magnitude faster.

Moreover, these results may underestimate the potential
speedup in many applications. We believe that current 3D
benchmarks in the literature are non-adversarial for A* in that
the 3D grid-distance estimate of path cost closely resembles
the true path cost. We expect that JPS-3D speedups will sub-
stantially increase on benchmarks where heuristic estimates
are less informed.

Despite these improvements, 3D pathfinding remains a dif-
ficult problem. The sheer size of these maps alone means that
A* solutions expand and generate up to tens of millions of
nodes. On the most adversarial instances, it can take hundreds
of seconds for JPS-3D to solve. One interesting direction for
further work is to extend JPS-3D to generate all, but selec-
tively insert children into the OPEN list based on their f -cost.
This idea, known as partial expansion, has been investigated
in a variety of domains where problems have prohibitively
large branching factors (Goldenberg et al. 2014; Felner et al.
2012). Due to the high branching factor of 3D problems, this
could yield substantial performance improvements.

Acknowledgements
This research was funded by Woodside Petroleum Ltd.
through the Monash University Human-in-the-Loop Analyt-
ics Graduate Research Industry Partnership. We thank our
Woodside collaborators for many useful discussions and on-
going support. Daniel Harabor is partially supported by the
Australian Research Council under grants DP190100013 and
DP200100025, and by a gift from Amazon.

References
Alain, B. 2018. Hierarchical Dynamic Pathfinding for Large
Voxel Worlds. https://www.gdcvault.com/play/1025151/
Hierarchical-Dynamic-Pathfinding-for-Large. Accessed:
2022.
Beig, M.; Kapralos, B.; Collins, K.; and Mirza-Babaei, P.
2019. G-SpAR: GPU-Based Voxel Graph Pathfinding for
Spatial Audio Rendering in Games and VR. In 2019 IEEE
Conference on Games (CoG), 1–8.
Brewer, D. 2019. Game AI Pro 360, chapter 3D Flight Nav-
igation Using Sparse Voxel Octrees, 273–282. CRC Press.
ISBN 9780429055096.

Brewer, D.; and Sturtevant, N. R. 2018. Benchmarks for
Pathfinding in 3D Voxel Space. Proceedings of the Inter-
national Symposium on Combinatorial Search (SoCS), 9(1):
143–147.
Canny, J.; and Reif, J. 1987. New lower bound techniques for
robot motion planning problems. In 28th Annual Symposium
on Foundations of Computer Science (SFCS), 49–60.
Felner, A.; Goldenberg, M.; Sharon, G.; Stern, R.; Beja, T.;
Sturtevant, N.; Schaeffer, J.; and Holte, R. 2012. Partial-
expansion A* with selective node generation. In Twenty-Sixth
AAAI Conference on Artificial Intelligence.
Goldenberg, M.; Felner, A.; Stern, R.; Sharon, G.; Sturtevant,
N.; Holte, R. C.; and Schaeffer, J. 2014. Enhanced Partial
Expansion A*. Journal of Artificial Intelligence Research,
50: 141–187.
Harabor, D.; and Grastien, A. 2011. Online Graph Pruning
for Pathfinding on Grid Maps. In Proceedings of the Twenty-
Fifth AAAI Conference on Artificial Intelligence, AAAI’11,
1114–1119. AAAI Press.
Harabor, D.; and Grastien, A. 2012. The JPS pathfinding sys-
tem. In International Symposium on Combinatorial Search,
volume 3.
Liu, S.; Watterson, M.; Mohta, K.; Sun, K.; Bhattacharya, S.;
Taylor, C. J.; and Kumar, V. 2017. Planning Dynamically
Feasible Trajectories for Quadrotors Using Safe Flight Cor-
ridors in 3-D Complex Environments. IEEE Robotics and
Automation Letters, 2(3): 1688–1695.
Min, J.-G.; Ruy, W.-S.; and Park, C. S. 2020. Faster Pipe
Auto-Routing Using Improved Jump Point Search. Interna-
tional Journal of Naval Architecture and Ocean Engineering,
12: 596–604.
Muratov, T.; and Zagarskikh, A. 2019. Octree-Based Hier-
archical 3D Pathfinding Optimization of Three-Dimensional
Pathfinding. In Proceedings of the 2019 3rd International
Symposium on Computer Science and Intelligent Control, 1–
6. Amsterdam Netherlands: ACM.
Noonchester, A. 2019. ‘Marvel’s Spider-Man’ AI Post-
mortem. https://gdcvault.com/play/1025828/-Marvel-s-
Spider-Man. Accessed: 2022.
Schwarz, M.; and Seidel, H.-P. 2010. Fast Parallel Surface
and Solid Voxelization on GPUs. ACM Transactions on
Graphics, 29(6).
Silva, G.; Reis, G.; and Grilo, C. 2019. Voxel Based Pathfind-
ing with Jumping for Games. In EPIA Conference on Artifi-
cial Intelligence, 61–72. Springer.
Sturtevant, N. R.; and Rabin, S. 2016. Canonical Orderings
on Grids. In IJCAI, 683–689.
Zhang, N.; Zhang, M.; and Low, K. H. 2021. 3D Path
Planning and Real-Time Collision Resolution of Multirotor
Drone Operations in Complex Urban Low-Altitude Airspace.
Transportation Research Part C: Emerging Technologies,
129: 103–123.
Zhang, S. 2021. Trajectory Planning Based on Optimized
Jump Point Search Results Using Artificial Potential Field in
3-D Environments. Master’s thesis, University of California,
Santa Cruz.


